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Oscillatory Normal Stresses in Melts
and Concentrated Solutions of cis-1,4-Polybutadiene

G.A. Alvarez and H.-J. Cantow

Institut fir Makromolekulare Chemie der Universitét Freiburg, Hermann-Staudinger-
Haus, Stefan-Meier-StraBe 31, D-7800 Freiburg i. Br., Federal Republic of Germany

Summarz

Oscillatory normal stresses were measured in melts and concentrated
solutions of cis-1,4-polybutadiene (PB}, angd compared to the Rouse theory,
including polydispersity and molecular weight dependence. Good agreement
was obtained in all but one sample consisting of low molecular weight PB
0il, where the first normal complex stress coefficient was abnormal.

Introduction

, Small-amplitude oscillatory shear flow is the simplest way to intro-
duce time-dependent stresses in rheological equations of state. 1In
addition to strain, material functions are thus expected to depend on time
or frequency.

The molecular theory of Rouse successfully predicts frequency depend-
ence of material functions, at small strains, for polymer melts and
concentrated solutions. Important modifications of the theory have been
the extension (FERRY 1955) to entangled polymers, the derivation of
oscillatory normal stress coefficients (WILLIAMS 1969), and the formulation
of the constitutive equation (LODGE 1971). Recently, we have improved
the accuracy of the predictions by postulating a smooth transition between
entangled and nonentangled submolecules (ALVAREZ 1981), Additionally, we
are able to include molecular weight heterodispersity in the model by
blending a finite number of components together with a nonlinear law
(ALVAREZ 1982). It will be shown below that the molecular weight hetero-
geneity of the polymer has a strong influence on the normal stresses, at
low frequency.

In this paper we exploit the unique opportunity given by small-
amplitude oscillatory shear flow, to be able to correlate normal stresses
with molecular theory. To our knowledge, no work on oscillatory normal
stresses for melts has been published up to now, apart from early work on
rubber vulcanizates {WARD 1958), Measurements on dilute solutions have
been made (WILLIAMS 1969), and on concentrated solutions (CHRISTIANSEN
1981},

OSCILLATORY SHEAR MATERIAL FUNCTIONS

The unsteady response of cis-1,4-polybutadiene (PB) melt (M = 488
kgmol *, M /M = 2,3), contained between a plate and a small-angle cone
undergoing small-amplitude, transverse oscillations, is shown in Figure 1.
Measurement reveals that shear stress oscillates with frequency ¢, and
phase shift with respect to strain (or strain rate); normal stress
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oscillates with frequency 2w about a nonzero mean value, alsoc with phase
shift to strain.
The sinusoidally-varying shear stress may be represented as:
T = Re{T Oelwt}
yx yx

o, s ) . A,
where Tyx is complex. Within the framework of linear viscoelasticity,

(1)

the complex viscosity function is defined by:

T = -y (2)

where -
n =7n'—in" (3)

The real part n', the dynamic viscosity may be associated with energy
losses, while the imaginary part n" may be associated with energy storage.
The normal stress response can be written
2iwt
T, =d, + Re{T.,Oe 0 } (4)
JJ J JJ

and then, functions analogous to the complex wviscosity can be defined:

o ¢} ® . 0,2
Tex ~ vy _Wl <ny ) 5)
_ _y 9], o2
dx - dy = Wl ny (6)
e 1 _ 1 "
W1 = Wl 1?1 (7

The same treatment is valid for other combinations of normal stresses,
but in the present experiment only the above defined functions can be
measured.

Next, we summarize the results of the molecular theory which allows
prediction of the above defined functions.

Molecular theory

In its modern form (LODGE 1971), the constitutive equation for the
ROUSE/ZIMM model is identical with the generalized MAXWELL model:

@ AT, . (P
-z, P 1) - _n
Ti3 "=ty 7 Ty oot - "plij ()
fob2
np = ckTTp and Tp ='E§57; (9)

fo is the bead friction coefficient, b is the root-mean-square end-to-end

distance of two adjacent beads at equilibrium, and ¢ is the number of
molecules per unit volume., In the limit of vanishing hydrodynamic inter-

action
Xp = 4sin2[——Eﬂ——] ~ <§E>2 for N>>1 (10)
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The decoupled first-order linear differential equation (8) can be
integrated and solved to give the required material functions. The complex
viscosity is given by:

N T
2 _ : —Pk
n ng ¥ ck"rpz_:1 1+imp (11)

where nS is the solvent viscosity.

In the calculations below we use a modification of (9):

T =TQ
pmod p

Q=p . B, = (12)

e M
€ ¢

to account for a smooth transition between entangled and nonentangled
submolecules (ALVAREZ 1981). MC is the critical entanglement molecular
weight.

The following relations have been derived for the generalized
Maxwell model:

W Y@ = ) (13)

¥ Fw) = n"w - n"ew (14)
d *

WZ = Q, WZ = 0 (15)

This completes the treatment for homodisperse samples. In the presence of
molecular weight heterogeneity the T 's are mixed according to a nonlinear
law given elsewhere (ALVAREZ 1982). p

Results

The first-normal stress coefficients defined by equations (5)-(7),
were calculated, with inclusion of inertia, by means of equations given
(BIRD 1964) for the cone-and-plate system. At each frequency, amplitude
and phase shift values are extracted by computer from data as presented in
Figure 1. In the Figure, the points are on-line digitized values of
amplifier signals, and the lines are synthetic sine functions from the
optimized amplitudes and phase shifts.

The measurement of normal stresses is, generally, not very accurate,
It should be pointed out that the normal forces in Figure 1 are of the
order of .1 gramm, and the same levels of force could be generated by
axial displacement of the rheometer frame as low as lum. At present, the
measurements are plagued by thermal instability of the room and a base line
correction must be applied to the data, giving rise to large uncertainty in
the displacement force, especially as normal forces relax slower than
shear forces. An interesting hypothesis about the "lag" in the normal
oscillations is that it is due to instrumental compliance ("yawning”) of
the type reported (MEISSNER 1972, GRAESSLEY 1977), especially as the "lag"
increases with frequency.
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The measured normal stress coefficients and the fits of these to mole-
cular theory are shown in Figures 2-6, for the PB melt, two 24 % w/w solu-
tions of PB in n-tetradecane and in low molecular weight PB oil (Mn = 1.5

kgmol—l), as well as a low molecular weight PB oil (Mn =6 kgmol_l). Both
the absissa and the ordinate are shifted in temperature and concentration
according to the latest theoretical results (GRAESSLEY and EDWARDS 1981).
Only for the sample of low molecular weight PB (Mn =6 kgmol'l, Figure 6)

serious disagreement is found between theory and experiment, in stress as
well as shear dependence. There is no explanation, at present, for this
discrepancy.

Finite-amplitude oscillatory shear

The validity of the linear constitutive assumption embedded in (1) is
well justified by the agreement of the measured functions with the results
of the molecular theory. The deviations from linearity are nevertheless
strong, for melts, as shown in Figure 7. The simplest finite-amplitude
strain model is the corotational JEFFREYS model, which yields (1) as a
first and second term in an expansion over strain.

Second normal stress difference

Accoxding to theoretical analysis (YAMAMOTO 1969), the total normal
force acting on the discs in the Eccentric Rotating Disc rheometer gives

the second normal stress difference Tyy - Tzz. A second normal stress

coefficient is defined by:

F 2
-1 =Z=(_\y2+p‘“‘ v? (16)

where the second term is the sample inertia, is plotted in Figure 8, A
change of sign in Wz(w) is observed. For the Rouse theory Wz(w) = 0.
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