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Oscillatory Normal Stresses in Melts 
and Concentrated Solutions of cis-l,4-Polybutadiene 
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Haus, Stefan-Meier-StraSe 31, D-7800 Freiburg i. Br., Federal Republic of Germany 

Summary 

Oscillatory normal stresses were measured in melts and concentrated 
solutions of cis-l,4-polybutadiene (PB), an~ compared to the Rouse theory, 

including polydispersity and molecular weight dependence. Good agreement 
was obtained in all but one sample consisting of low molecular weight PB 

oil, where the first normal complex stress coefficient was abnormal. 

Introduction 

Small-amplitude oscillatory shear flow is the simplest wa~ to intro- 
duce time-dependent stresses in rheological equations of state. In 

addition to strain, material functions are thus expected to depend on time 
or frequency. 

The molecular theory of Rouse successfully predicts frequency depend- 

ence of material functions, at small strains, for polymer melts and 
concentrated solutions. Important modifications of the theory have been 

the extension (FERRY 1955) to entangled polymers, the derivation of 
oscillatory normal stress coefficients (WILLIAMS 1969), and the formulation 

of the constitutive equation (LODGE 1971). Recently, we have improved 

the accuracy of the predictions by postulating a smooth transition between 
entangled and nonentangled submolecules (ALVAREZ 1981). Additionally, we 

are able to include molecular weight heterodispersity in the model by 
blending a finite number of components together with a nonlinear law 

(ALVAREZ 1982). It will be shown below that the molecular weight hetero- 

geneity of the polymer has a strong influence on the normal stresses, at 
low frequency. 

In this paper we exploit the unique opportunity given by small- 

amplitude oscillatory shear f~ow, to be able to correlate normal stresses 
with molecular theory. To our knowledge, no work on oscillatory normal 

stresses for melts has been published up to now, apart from early work on 
rubber vulcanizates (WARD 1958). Measurements on dilute solutions have 

been made (WILLIAMS 1969), and on concentrated solutions (CHRISTIANSEN 
1981). 

OSCILLATORY SHEAR MATERIAL FUNCTIONS 

The unsteady response of cis-l,4-polybutadiene (PB) melt (M = 488 
-I 

kgmol , M /M = 2.3), contained between a plate and a small-ang~e cone 
w n 

undergoing small-amplitude, transverse oscillations, is shown in Figure i. 
Measurement reveals that shear stress oscillates with frequency ~, and 
phase shift with respect to strain (or strain rate); normal stress 
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oscillates with frequency 20~ about a nonzero mean value, also with phase 
shift to strain. 

The sinusoidally-varying shear stress may be represented as: 

= Re~T, ~ 
Tyx [ yx (i) 

O . 
where T is complex. Within the framework of linear viscoelasticity, 

yx 
the complex viscosity function is defined by: 

o = _ x. o (2) 
Tyx Yyx 

where 
x 

q = q'-- iN" (3) 

The real part ~' , the dynamic viscosity may be associated with energy 
losses, while the imaginary part q" may be associated with energy storage. 

The normal stress response can be written 

T = d + 3 3  3 Re{Tjj~ (4i 

and then, functions analogous to the complex viscosity can be defined: 

o o _~1 ~(  x o) 2 T - �9 = ? (5) 
xx yy y 

dx - dy = -~Id'~yx~ 2 '  ' (6) 
a m 

~i ~ = ~I' - i~i" (7) 

The same treatment is valid for other combinations of normal stresses, 
but in the present experiment only the above defined functions can be 
measured. 

Next, we summarize the results of the molecular theory which allows 
prediction of the above defined functions. 

Molecular theory 

In its modern form (LODGE 1971), the constitutive equation for the 
ROUSE/ZIMM model is identical with the generalized MAXWELL model: 

(p) (P) ~Tij (P) 
Tij = p~__lTij ; Tij + T P ~ -npTij 

f b 2 
o 

= ckTT and T 
Bp p p 6kTl 

P 

(8) 

(9) 

f is the bead friction coefficient, b is the root-mean-square end-to-end 
o 

distance of two adjacent beads at equilibrium, and c is the number of 
molecules per unit volume. In the limit of vanishing hydrodynamic inter- 
action 

= 4sin2[ p~ ] ~ <NP~) 2 P L2 (N+I)j for N>>I (iO) 
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The decoupled first-order linear differential equation (8) can be 

integrated and solved to give the required material functions. The complex 

viscosity is given by: 

N 

= ~S 4 ck (11) 
I+i~T 

p=1 p 

where ~S is the solvent viscosity. 

In the calculations below we use a modification of (9): 

T = 

Pmod TpQ 

2.4e-P/Pe M 

Q = Pe ' Pe =-~C 
(12) 

to account for a smooth transition between entangled and nonentangled 

submolecules (ALVAREZ 1981). M C is the critical entanglement molecular 

weight. 
The following relations have been derived for the generalized 

Maxwell model: 

t0~id(~) = D"(W) (13) 

i~IM(W ) = qx(~) _ qX(2~) (14) 

X 
~2 d = O, ~2 = O (15) 

This completes the treatment for homodisperse samples. In the presence of 
molecular weight heterogeneity the T's are mixed according to a nonlinear 
law given elsewhere (ALVAREZ 1982). p 

Results 

The first-normal stress coefficients defined by equations (5)-(7), 
were calculated, with inclusion of inertia, by means of equations given 

(BIRD 1964) for the cone-and-plate system. At each frequency, amplitude 

and phase shift values are extracted by computer from data as presented in 
Figure i. In the Figure, the points are on-line digitized values of 
amplifier signals, and the lines are synthetic sine functions from the 
optimized amplitudes and phase shifts. 

The measurement of normal stresses is, generally, not very accurate. 

It should be pointed out that the normal forces in Figure I are of the 

order of .I gramm, and the same levels of force could be generated by 
axial displacement of the rheometer frame as low as l~m. At present, the 
measurements are plagued by thermal instability of the room and a base line 
correction must be applied to the data, giving rise to large uncertainty in 
the displacement force, especially as normal forces relax slower than 
shear forces. An interesting hypothesis about the "lag" in the normal 
oscillations is that it is due to instrumental compliance ("yawning") of 
the type reported (MEISSNER 1972; GRAESSLEY 1977), especially as the "lag" 
increases with frequency. 



HI I'-'. ~ 
I-'. ~ I/~ (B I~ 
N 
~. ,'-" ,,~ 

0 0 

~= ~.~ 

~O 0 I=I 0 
~,~" I~ 
i ~- (~r 

;~"0 0 I~'~ 

0..* r m 0 

~ I.-'- m 0 
{~ r r I~ I~ 

~o~ 

I,~ ~ 0 

ff {-b 
mmm o 

0 "~ 

I {-' 

~ r {",i o" m ~i 

H-g1 0 �9 

D~ 0 I-'- ~ m 
�9 h I.-,. I-,- ~ ~" ~ / 

,,~o~ 
~ t.,I ~ ~ 0 

el- I-t 0o (1)II ~ lI) ~ 

~ ~ ~'~' , 

;~-e~ ~. ~ 
I..,. I~ rtl~ 0 

'" I ~ ~ ~ I ~l 

~I~o~ I-, I--' ,~ 

I o~ 

r~ ~ LkPo.l 
..~,.~ =~-'- 
�9 - - r~ ~ =~ ~ 

q 

C I 

' ' I ' ' I ' ' I 

- {09 

-(~.- ~.) LPoJ 



r,
0 

o o ~,
- 

-3
 

' 
5 

a 
i 

0 --
 

7 ,2
1 

9 

,1
1' =1

' ! ! 
s 

# 
i 

�9
 

d'
 

I 
, 

' 
"4

/ 
' 

' 
l 

, 
, 

I 

-6
 

-3
 

0 
3 

I 
I 

]0 9
 [

~o
To

c/r
od

s-*
] 

]2
 

6 
-3

 
6 

"S
 

s 
S 

~ 

s 
SS

SS
SS

 

- 
_~

 

o ~ 
'
'
,
k
 %%
% 

I-
',

 
, 

I 
, 

, 
I 

, 
,'

N 
, 

\
 

-6
 

-3
 

I~
 

3 

]0
g 

[w
o,
oc
/r
od
s-
']
 

F
i
g
u
r
e
 
3.

 
D
e
p
e
n
d
e
n
c
e
 

o
f
 
f
i
r
s
t
 
n
o
r
m
a
l
 
i
n
 
p
h
a
s
e
 
s
t
r
e
s
s
 

c
o
e
f
f
i
c
i
e
n
t
 

o
n
 
f
r
e
q
u
e
n
c
y
.
 

S
y
m
b
o
l
s
 

a
s
 
i
n
 
F
i
g
u
r
e
 

2.
 

T
h
e
 
m
o
n
o
d
i
s
p
e
r
s
e
 

R
o
u
s
e
 
t
h
e
o
r
y
 
e
x
h
i
b
i
t
s
 

a 
c
h
a
n
g
e
 
o
f
 
s
i
g
n
 

F
i
g
u
r
e
 
4
.
 

F
i
r
s
t
 
n
o
r
m
a
l
 
o
u
t
 
o
f
 
p
h
a
s
e
 

s
t
r
e
s
s
 
c
o
e
f
f
i
c
i
e
n
t
 

v
e
r
s
u
s
 

f
r
e
q
u
e
n
c
y
.
 

S
y
m
b
o
l
s
 

a
s
 
i
n
 
F
i
g
u
r
e
 

2 

O1
 

O1
 



M
 

M
 

n 
w 

3 
t~

o~
-~

. [~
ol

-~
 

M
 

M
 

_ 
] 

�9
 
�9
 

6
 

2
4
 

l
o
g
 I
n 

/ 
P
a
s
 

�9
 
�9
 
_
 

i
 

.
.
.
.
.
.
.
.
.
.
 

W
-
~
D
�9
 

m
~

Q
m

D
 

~
 

I
P
-
 ~
-
~
-
 
- 
-.
 

1
2
 

1
2
 

*e
x,a

 
' 

�9 

B 
~ 

13
.8

 
0 

�9
 

o
_
 

~ 
~ 

6 
1
3
.
8
 

a 

~
2
 

,2
2 

--
-3

~ 
..

..
 

-~
 .
..

..
. 
~
-
-
-
-
-
:
 

.
.
.
.
.
.
.
.
 

-3
 

- 
-i

-2
 .

..
. 

q2
 .

.
.

.
.

 
q?

 .
..

..
. 

s 
..

..
..

. 
" 

.
.

.
.

 

o 

_6
_ 
3 

, 
, 

i 
, 

, 
3 

-6
 
~ 

' 
' 

I 
, 

. 
0 

0 
3 

[oo
,< 

]o,
 [.

o,,
 

oi
 

F
i
g
u
r
e
 
5.
 

F
i
r
s
t
 
n
o
r
m
a
l
 
d
i
s
p
l
a
c
e
m
e
n
t
 

s
t
r
e
s
s
 
c
o
e
f
f
i
c
i
e
n
t
 

a
n
d
 
d
y
n
a
m
i
c
 
v
i
s
c
o
s
i
t
Y
l
v
e
r
s
u
s
 

f
r
e
q
u
e
n
c
y
 

f
o
r
 
l
o
w
 
m
o
l
e
c
u
l
a
r
 

P
B
 
o
i
l
 

(
M
 

= 
6 

k
g
m
o
l
-
 
).

 
S
o
l
i
d
 
l
i
n
e
s
 
a
r
e
 
t
h
e
o
r
e
t
i
c
a
l
 

c
u
r
v
e
s
 
w
i
~
h
 
M 

/
M
 

= 
2
.
3
 
b
e
l
o
w
,
 
a
n
0
 
M 

/
M
 

= 
4 

a
b
o
v
e
.
 

w 
n 

w 
n 

T
h
e
 
d
a
s
h
e
d
 
l
i
n
e
s
 
a
r
e
 
g
i
v
e
n
 
b
y
 
m
o
n
o
d
i
s
p
e
r
s
e
 

t
h
e
o
r
y
 
w
i
t
h
 

s
a
m
e
 
M
w
 
a
s
 
s
o
l
i
d
 
l
i
n
e
s
.
 

T
r
e
 f
 
= 

2
9
8
 
K 

F
i
g
u
r
e
 
6
.
 

F
i
r
s
t
 
n
o
r
m
a
l
 
i
n
 
p
h
a
s
e
 
s
t
r
e
s
s
 
c
o
e
f
f
i
c
i
e
n
t
 

a
n
d
 
t
h
e
o
r
e
t
i
c
a
l
 

c
u
r
v
e
s
 
v
e
r
s
u
s
 

f
r
e
q
u
e
n
c
y
 

f
o
r
 
s
a
m
p
l
e
 

a
n
d
 
p
a
r
a
m
e
t
e
r
s
 

a
s
 
i
n
 
F
i
g
u
r
e
 

5 



3 
0.
8 

7-
 

0.
6 

B.
4 

0.
2 

. 

"- 
",

 
"-

.'.
'. 

"-
.@

 
'. 

..
..

..
 

7:
--

. 
::

.,
 

"'.
'".

 
"'"

"'~
:~

',,
..'

".
. 

""
~"

::
:~

!!
 

;;
..

 
,.

 
o 

"..
 "

...
 

@
 

...
...

.. <
::

,,.
 

' .
..

. 
;i

;;
::

;;
.&

 

".
 

~ 
"'.

., 
...

...
...

...
...

...
. 

"-
 

"'.
 

V 
''-

. 
%

. 
"'

-.
 

"'
..

..
 

""
.,

 
""

.t
 

[
r
a
d
l
s
]
 

",
 

0
 

0
.
6
2
8
 

..
 

�9
 

O
.
 9

96
 

- 
"-

 
,-
I 

1
. 

2
5

4
 

1
.5

7
8

 
V
 

1.
 
9
8
7
 

-
 

0
 

2.
5O

l 
"'

.. 
# 

0
 

3
. 
1
4
9
 

"'
. 

( 
3

. 
96

4 
"'

-.
 

4
.
 9

91
 

"'
..

 
6

. 
~

8
3

 
".

. 
9.

 
95

8 
"-

. 
19

. 
8
6
9
 

"'
t 

I 
,
 

I 
,
 

I 
i~
.l
 

0.
2 

I~
.3
 

7
 ~
 

F
i
g
u
r
e
 
7
.
 

D
e
p
e
n
d
e
n
c
e
 
o
f
 
f
i
n
i
t
e
-
a
m
p
l
i
t
u
d
e
 

s
t
o
r
a
g
e
 

m
o
d
u
!
~
s
 
o
n
 
s
t
r
a
i
n
 
i
n
 
f
r
e
q
u
e
n
c
y
 
r
a
n
g
e
 

.
6
2
8
 
t
o
 
1
9
.
9
 

r
a
d
s
 
-
 
f
o
r
 
t
h
e
 
P
B
 
m
e
l
t
 

~.
4 

0.
0 

'3
 

,,-
,, 

I 
�9

 

�9
 

I 

I 

ql
I 

I 
I 

I 

Q 
I 

I 

I 

�9
 I
 

g 
m 

B 

I 
I 

U 
@ 

Q
m
 

I B 

I 

].4
3 

, 
i 

, 
i 

, 
- 

-1
 

1 

lo
 9 

[wa
Tac

/fad
s-']

 3 

F
i
g
u
r
e
 
8
.
 

S
e
c
o
n
d
 
n
o
r
m
a
l
 
s
t
r
e
s
s
 
c
o
e
f
f
i
c
i
e
n
t
 
v
e
r
s
u
s
 

f
r
e
q
u
e
n
c
y
 
f
o
r
 
P
B
 
m
e
l
t
 
i
n
 
e
c
c
e
n
t
r
i
c
 
r
o
t
a
t
i
n
g
 
d
i
s
k
 

e
x
p
e
r
i
m
e
n
t
 

O1
 

-4
 



The measured normal stress coefficients and the fits of these to mole- 
cular theory are shown in Figures 2-6, for the PB melt, two 24 % w/w solu- 
tions of PB in n-tetradecane and in low molecular weight PB oil (M = 1.5 

1 n 
- -I 

kgmol ), as well as a low molecular weight PB oil (M = 6 kgmol ). Both 
�9 . n 

the abslssa and the ordinate are shlfted in temperature and concentration 
according to the latest theoretical results (GRAESSLEY and EDWARDS 1981). 
Only for the sample of low molecular weight PB (M n = 6 kgmol -I, Figure 6) 

serious disagreement is found between theory and experiment, in stress as 
well as shear dependence. There is no explanation, at present, for this 
discrepancy. 

Finite-amplitude oscillatory shear 

The validity of the linear constitutive assumption embedded in (i) is 
well justified by the agreement of the measured functions with the results 
of the molecular theory. The deviations from linearity are nevertheless 
strong, for melts, as shown in Figure 7. The simplest finite-amplitude 
strain model is the corotational JEFFREYS model, which yields (i) as a 
first and second term in an expansion over strain. 

Second normal stress difference 

According to theoretical analysis (YAMAMOTO 1969), the total normal 
force acting on the discs in the Eccentric Rotating Disc rheometer gives 
the second normal stress difference T - T A second normal stress 

yy zz" 

coefficient is defined by: 

Fz <-~2 ~42R~ 2 
Tyy Tzz ~R 2 + y (16) 

where the second term is the s~nple inertia, is plotted in Figure 8. A 

change of sign in ~2(W) is observed. For the Rouse theory ~2(~) = O. 

Acknowledgements 

Continued financial support from the DEUTSCHE FORSCHUNGSGEMEINSCHAFT is 
greatly appreciated. CHEMISCHE WERKE HULS AG we thank for the PB samples. 

References 

L.C. ACKERS AND M.C. WILLIAMS, J. Chem. Phys. 51, 3834 (1969) 
~,A. ALVAREZ AND H.-J. CANTOW, Polym. Bull. 4, 383 (1981) 

G.A. ALVAREZ AND H.-J. CANTOW, Polym. Bull. 7,No.2/3 (1982) 
R.L. CRAWLEY AND W.W. GRAESSLEY, Trans. Soc.--Rheol. 2_~i, 19 (1977) 

J.D. FERRY ET AL., J. Appl. Phys. 26, 359 (1955) 
H.W. GAO, S. RAMACHANDRAN AND E.B. CHRISTIANSEN, J. Rheol. 25, 213 (1981) 
W.W. GRAESSLEY AND S.F. EDWARDS, Polymer 22, 1329 (1981) 
A.S. LODGE AND Y. WU, Rheol. Acta Io, 539 (1971) 
J. MEIBNER, J. Appl. Polym. Sci. 16, 2877 (1972) 
A.F.H. WARD AND G.M. JENKINS, Rheol. Acta ~, iiO (1958) 
M.C. WILLIAMS AND R.B. BIRD, I&EC. Fundamentals 3, 42 (1964) 
M. YAMAMOTO, Japan. J. Appl. Phys. 8, 1252 (1969) 

Accepted March 2, 1982 

C 

Responsible for the text: The Editors (see inside title page of this issue). 
For advertisements: E. L~ckermann, Kurf~rstendamm 237, D-IOOO Berlin 15, 
Tel. (030) 882 1031, Telex O1-85411, Springer-Verlag Berlin Heidelberg New York 
Printed in Germany by Beltz Offsetdruck, Hemsbach/BergstraBe 

Springer-Verlag C~IbH & Co KG Berlin Heidelberg 1982 

Diese Ausgabe enth&lt eine eingeheftete Beilage vorn Springer-Vedag, Berlin, Heidelberg, New York 


